
Journal of Statistical Physics, Vol. 44, Nos. 5/6, 1986 

On Knudsen Flows within Thin Tubes t 
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The dynamics of a test particle in an infinite tube is investigated. It is proven 
that the evolution tends to that of a diffusion process as the radius of the tube 
decreases to zero. This justifies the hypotheses underlying an experiment of 
Clausing (1930). 

KEY WORDS: Knudsen flow, infinite tube, diffusion approximation. 

1. I N T R O D U C T I O N  

In this paper we study the time evolution of a rarefied gas within a long 
thin tube. The main point of our investigations is the following hypothesis: 
Assuming that collisions between gas particles can be neglected, the 
dynamics of the gas is well-approximated by a diffusion process. 

It was Clausing (~) who in 1930 used this hypothesis to find out by 
experiment some information concerning the gas-surface interaction. As far 
as we know, the diffusion ansatz for a flow like this--al though confirmed 
by a paper of Armand(2)--has never been derived rigorously. Simulations 
carried out in order to clear up the problem (3'4) ended up with diverging 
results. Pack and Yamamoto (5'6) investigated asymptotic properties of the 
flow which again confirmed the diffusion hypothesis. 

As we show in the following, the distribution of the gas converges 
indeed to that of a diffusion process if the radius r of the tube decreases to 
zero. In particular, we investigate the dynamics of a test particle within an 
infinite tube. Between collisions with the wall it moves straight on. When 
hitting the wall it is either reflected elastically or absorbed by the wall for 
some random time and then reemitted diffusely. 
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In Section 2, we describe the motion of the test particle by means of a 
stochastic process. In Section 3 we pass over to the limit r--* 0 and show 
that the result is a diffusion process, provided the adsorption time and the 
temperature of the wall are properly scaled. The result we prove is a ver- 
sion of Donsker's invariance principle. Section 4 is devoted to Clausing's 
experiment, the controversies following it, and the relation of the results of 
this paper with Clausing's hypothesis. 

2. K N U D S E N  FLOW IN AN INFINITE CYL INDER 

The model 

We study the motion of a particle moving in an infinite cylinder with 
radius r. The axis of the cylinder is supposed to be the z axis of a fixed Car- 
tesian coordinate system. 

Between collisions with the wall of the cylinder the particle moves with 
constant velocity. At the wall, it is assumed to be reflected according to 
some Maxwellian reflection law with accommodation coefficient and delay 
time. This means precisely: When hitting the wall, the particle may be 
reflected elastically. The probability for such an event is 2, 2 being a fixed 
number in [0, 1). With probability 1 -  2 the particle is trapped by the wall 
for some time r. r is randomly distributed with probability density 

p~(z ) - - a ' e  r (1) 

with a a strictly positive number. (The case a = oo is also possible and has 
to be interpreted as p , ( r ) =  6(z).) Afterward it is diffusely reflected. This 
means that the particle is reemitted from the wall with a random velocity 
being distributed with a certain probability density (see Ref. 6, Sect. 3). 
Denote by w the velocity component parallel to the axis, by v• the velocity 
component in the direction of the inner normal at the reemission point, 
and by vii the component perpendicular to v• and w. Then the probability 
density for the velocity starting from the wall is 

p~,w(V• for v •  (2) 

is a quantity proportional to the inverse of the wall temperature. 
Since the whole limiting procedure we are going to develop in Sec- 

tion 3 is a matter of scaling, we introduce the rescaled probability densities 

2 1 e ~ qv(vi, vLi) := 2v• v~. 
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and 

l e w2 qw(w):= ~ - 

Now suppose the particle is reemitted from the emission point 
(r cos 0o, r sin 0o, z0) r at time to with some random velocity (v i ,  vlr, w) dis- 
tributed by (2). Without lack of generality we put to = O, zo = 0, and 0o = 0. 
Then it hits the wall again at some later time t' at some new point (r cos 0', 
r sin 0', z') r. Our first aim is to find out the probability density Pt for t' and 
the joint densities P,,w for t' and w and P~.z for t' and z'. Clearly, the velocity 
and the points at the wall are related by 

E7 r 1 (v• w)= r ' (1 -cosO ' ) , -~ ' s inO ' ,  w 

1 ! 

t' J r ( l - c o s  0'), rs in  0,  z ' ]  

(3) 

Applying the transformations (3) to formula (2), calculating the Jacobians, 
and integrating over 0' (and w) yields 

(a) 

L e m m a  1. 

where q~ is the rescaled probability density 

(b) 

2 . (2g 
qt(t) = x/-~ t 4 Jo (1 - c o s  O)2.exp[-(2/t2)(1 - c o s  0)] dO 

p,,w(t', w) = p,(t ').  ~ q ~ ( x ~  w) 

(in particular, t' and w are independent) 

, ( , / ;  z,) 
(c) p,,~(t, z') = p,(f') - ~  qw \ t' / 

(t', z') are the coordinates of the first contact with the wall after the time 
to = 0. This contact may result in either an elastic or a diffuse reflection. 
Define by (tl,  Zl) the coordinates of the first diffuse reflection. Again we are 
looking for the corresponding densities p~(tl) , ;~ pt,w(tl w) and ~- , P,,z(tl, zl). 
Since an elastic rescattering does not affect the motion in the z direction, 
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(tl, z~) and (t', z') are related in the following way: If the particle has been 
reflected elastically exactly n times before the first diffuse reflection then 

1 
(t~, ~ ) = - - : - :  (t', z') 

n + l  

The probability of having n elastic and then a diffuse reflection is 
2 n" (1 - 2). Thus, by conditioning on the number n we get 

(a) 

Lemma 2. 

;~t 1 z (  t~ ) 

with the rescaled probability density 

(b) 

(c) 

qt - n + 1 q~ n=O 

pt;:w(t,, W)= Pt(tl)" ~ qw(xfl ~ W) 

( ~  1 ( t 1 Z~ 2 . _ _  ZI~ ~_. : 2 
Pt, z( t, Zl)=pr X/~qw qt,z - - , -  

' tl \---~1 ] x ~ r  2 \~//~r rJ 

The collision time densities can be characterized as follows 

L e m m a  3. qt and q~ are bounded. Further qt(t) = l/t  4. 7(t) and 

1 
q~(t) = ~ '  7;(t) 

where ;J and 7 ;" are monotonely increasing functions with 

7 ( o o ) ' =  lim 7 ( t )=6x / - s  

and 

yx(ov)'= lim yx(t)=6x/~ 1 + 4 2 + 2 2  

Proof. In order to prove boundedness, we have to show that 

(1-- cos O)2 exp -- ~ (1-- cos O) dO 
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is bounded in a neighborhood of zero. To this aim, it is obviously enough 
to show boundedness of 

goo(t) ' =  ~ (1 - c o s  0) 2 e x p [ -  (2/t2)(1 - c o s  0)] dO 

for some fixed 0o > 0. 
We choose 0o such that for all 0 ~ [0, 0o] 

Then 

�88 2 ~< 1 - cos 0 ~< 1 0 2  

g~176 "~ 4t ---~ o \ z / 

~<~t 'exp - ~ 0  2 d O < o r  

From the preceding lemmata we obtain 

and 

7(t)= 7 (1 - c o s  0) 2. e x p [ -  (2/t2)(1 - c o s  0)] dO 

7~(t) = ( 1 -  2) 2n. (n+  1)3.7 
n = 0  

Since for every 0, exp[ -(2/t2)(1 - c o s  0)] is an increasing function of t, the 
monotonicity property of 7 and 7 x is evident. By Lebesgue's theorem and 
the fact that 

follow 

and 

lira exp( - (2/t2)(1 - cos 0)) = 1 
t ~ o o  

 (oo) = 2  f:- (1 - c o s  0) 2 dO xfl  o 

~'(oo)=~(oo). (1-2). ~ 2 n . ( n + l )  3 
n = O  

The calculation of these terms ends up with the stated results. | 
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An Associated M a r k o v  Chain 

From now on, we only study the z component of the particle moving 
in the cylinder. Since elastic reflections do not affect the motion parallel to 
the axis we may forget about them. 

Now suppose the particle is trapped by the wall at Zo at time to. It 
remains at the wall for some random time ro being distributed by (1) and 
then leaves again with some velocity % .  The next trapping and change of 
velocity take place at some coordinates (ti, z~) related to Wo, Zo, to and ~o 
by 

Z1 = Zo + (t l  - to - ~o)" Wo 

( t l  t o -  % ,  z l  Zo) is distributed by the density - - P,,z- From z I the particle 
leaves again after some time ~1 with a new velocity w~, and so on. 

One can formulate these dynamics well in terms of a discrete Markov 
process (D,, T,, Zn). Again, we put to = 0 and Zo = 0. Then the process is 
defined by 

(To,  Z o ) =  (0, 0) (4a) 

the delay times D,  are independent of (T,, Zn) and 
distributed with density p~(z) (see eq. 1); (4b) 

the increments [Z .+  1 - Z. ,  T.+ 1 - -  (T. + Dn)] are independent of 
(D., T., Zn) and distributed with density p,X~ given 

by Lemma 2. (4c) 

We further define the random variables W n by 

Zn+l = Z n +  [ T . + I - ( T . + D . ) ] W n  (5) 

W n describes the velocity after the nth collision. It is independent of 
(Dn, Tn, Zn) and distributed with density xf~q(x/~  w). Further on, we 
need the following result: 

Lemma 4 .  

lim T, = oo a.s. (6) 
n ~ o o  

Proof. (6) is an immediate consequence of the law of large numbers: 

lim -1 T.  = ; o  t �9 p~ * p~(t) dt > 0 a.s. | 
n - +  oo n 



On Knudsen Flows within Thin Tubes 871 

The actual position of the particle at time t is described by a con- 
tinuous family [Z(t)]t~>0 of random variables which are defined by 

z(t) = z .  

= z . +  [t-(T.+DN) ]. W. 
if T.<~ t < T.  + D~ 

if T n + D ~ < ~ t < T ~ +  1 
(7) 

where Wn is defined by (5). Since property (6) holds, Z( t )  is well-defined 
for all t~>0. Let's point out, however, that the set [Z( t ) ] ,>o  does not 
define a Markov process. 

3. T H E  D I F F U S I O N  L IM IT  

The Rescal ing Procedure  

The random variables Tn+m-Tn and the deviations Zn + i - Z n  of the 
process defined by (4) depend on the parameters r, e, and a. To obtain 
convergence to a diffusion process in the limit r -*  0, e and G have to be 
rescaled in such a way that the ratio 

E(Zn + 1 - Zn) 2 
P := E ( T . + ~ -  T . )  (8) 

converges to a positive constant. To this aim we assume ~ and a to be of 
the form 

~x = OCo . r 2 

G o 

o ~ o "  r2 

(9) 

(lo) 

ao and Go being fixed constants. (Go may be infinite.) 
Instead of looking at the particular process defined in the preceding 

section we study the following more general setting: Suppose kt o to be an 
arbitrary probability measure on N+ x N satisfying 

f x dt~o(X, t ) = 0  

t-:= f tdUo(X,t)<oo 

1 
X 2 d [ . l o ( X  , t )  < o o  P:=7" J 

(11) 

(12) 
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and 

Define the Markov  chains (Z ,  T)(~ r) by 

(z ,  r)(or~ :=  (0, 0) 

(z,r)~:= ~ (L~)~ (13) 
k = l  

(X, z)(k ~), k = 1, 2 ..... being i.i.d, random variables distributed with 

( ') d~(r)(x' ')=-~ d#O ~ ' 7  

Further, define the continuous time process Z(~)(t) by 

Z(~)(t) = Z(. ~) + Az(r ) ( t )  if T~ ') ~< t < T (r) ~n+ 1 

(14) 

where AZ(r) ( t )  is a family of random variables with trajectories which are 
continuous and monotone  in each interval [T(~ r), 7-(r) 1 with limits ~n+lA 

J z ( ' ) ( : q ; ) )  = 0 

lira AZ(r) ( t )  = V(r) ~x ;-/q- 1 

(16) 

As in the proof  of Lemma 4 follows 

lira T(, r) = oo a.s. 
n ~ o o  

thus, z ( r ) ( t )  is well-defined for all t >~ 0. 
In the next section we prove weak convergence of Z (r) to a Brownian 

motion. The heuristic argument goes as follows (compare eq. 14): The 
number  of collisions up to time t is approximately 

t 
N(r)(t) :=  r 2 ' [ 

(strong law of large numbers). Thus 

N(r}(t) N(r)(t) 

k = O  k = O  

1 N(r)(t) 
- -  E X ( 1 )  

k = O  

As a consequence of the central limit theorem, the latter sum converges to 
the normal  distribution Y ( 0 ,  p - t )  with p as defined in (12). Since for r -~  0 

(15) 
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the increments of Z (r) are asymptotically independent, Z (r) converges to a 
Brownian motion Zp with zero drift and variance 

E [ Z A t )  - Z p ( s ) l  2 = p" I t -  sl 

In the subsequent section we are going to make these arguments precise. 

C o n v e r g e n c e  t o  B r o w n i a n  M o t i o n  

The proof of weak convergence of Z (~) to Zp is split up into two parts 
which are shown in Lemma 5 and Lemma 6. 

L e m m a  5. The finite dimensional distributions of Z (r) converge to 
those of Zp. 

Proo f .  

Given t I > 0 
Let us consider at first the one-dimensional distributions. 

N* 

z(r)(tl)=r" Z X(1)~-Az(r)(tl) 
k=l 

where N* is the random variable defined by TN. ~ t < TN. + 1. Since 

Az(r)(tl) L 0 

it is sufficient to prove convergence of 

to ~g'(0, p.  tl). With 

N* 

r" E X~" 
k = l  

N* N max{N,N*) 

r" Z X(kl ) = r " Z X(k i ) +- r " Z X(k i) 
k = 1 k = 1 min(N,N*)  

The central limit theorem states that the first r.h.s, term converges in dis- 
tribution to X ( 0 ,  p .  t~). Because of the law of large numbers 

N * ' N  1 ~ 1  a.s. 

and thus 

r "  

max(N,N*)  

Z X(k 1) ~ 0 

min(N,N*)  

822/44/5-6-11 
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Now suppose that for given k, all k-dimensional distributions converge 
to those of Zp, and let tl < "'" < tk+l be fixed times. Define by tk. the last 
collision time before and by t~ the first one after tk 

tk*=Tn t* = Tn+l for Tn<~tk<Tn+l 

Then given t~, and t~, Z( ')(tk+l)--zIr)(t*) is independent of 
z(r)(tl) ..... Z(')(tk 1), z(r)(tk *) and distributed as z(r)(tk + i-- t*). The con- 
vergence of the (k + 1 )-dimensional distribution now follows from 

t I -  tk. Z o I 

I . omm a  6. Given % > 0  arbitrary, the set of m e a s u r e s  {p(r)} 
corresponding to Z (') is tight in the space of continuous functions C[O, %]. 

ProoL We have to show that given e, i /> 0 there exist 6 ~ (0, 1) and 
ro > 0 such that in [0, %] 

P{ sup IZ{')(t)-z{')(s)l>e}<n forallr<<.ro 
I t -  sl <,5 

Given n~N,  define 6 = 6 ( n )  :=  Zo/n and let 0 =  to< "'" < t n = r o  be the 
equidistant partition of [0, %]. 

One can see easily that 

Pt sup IZ")(t)-Z")(s)l >et~</:'fsup sup 
t. lt sl<6 ~ j t6[tj,tj+l] 

n--1 f ~< ~ P sup 
j=O t~ [tj,tj+l] 

iz(,)(t) _ z(,)(tj)l >~" 

Iz(r'u)-- Z "U )I >3} 
Define the random variables N , ( j )  and N*(j)  such that 

T N  . ( j  ) <~ t j  < T N  , ( j  ) + t 

and 

Then 

implies 

T N * ( j ) -  1 ~ t j+  I < TN*(j)  

sup IZ(')(t)- z(')(O)l >~ 

g 
sup ]Z(k ~)- 7(r)~N(j) >-~ 

N. ( j )<k<N*( j )  
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W i t h  E)r)((~) we denote the event 

N*(j)-N,(j)<~[ 2r-~. t_ ] = 'N(6 )  

Then 

875 

since 

For fixed 6 

z(r) N(b) ' JV'(O, 25p) 
Thus the first term on the right-hand-side of (17) becomes arbitrarily small 
if 6 is small enough. Furthermore 

P[EJr)((~)] =P(T(r) ~} ---+ --N(~) *~ 0 if r + 0  

N(fi) 1 
T(r) = r2 1:(1) N(~) �9 ~ --* 26 a.s. 

k=o 

This completes the proof. | 

Convergence of the finite-dimensional distributions and tightness 
imply weak convergence on C[0, %] (see, e.g., Ref. 8, Theorem 8.1]). This 
proves the following theorem: 

~< P sup [ z ( r ) -  z(r)N.(j) >-6 Av P[E~r)( (~) l  
LN.(j) <~ k <~ N .(j) + N(cS) 

According to formula (10.7) in Ref. 8, 

P I sup IZ(k r ) - Z ( r )  I ~6} ~2P {IZ~o)I ~6-- %~N(~) F2pt-} 
L N.(j) <~ k < N.(j) + N(5 ) N, (j) 

Collecting all estimates yields 
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Theorem. Let ro be an arbitrary positive time. Then Z (r) converges 
weakly in C[0, %] (equipped with the uniform topology) to the Brownian 
motion Zp with the diffusion p defined by (t2). 

Back to the Knudsen Flow 

The situation described in Section 2 is a special case of the setting 
studied above. In particular, the measure d#o is defined by 

1 

with 

i q~ * q~(t, x) = q~(~) q~z(t - ~, x) & 
=0 

(compare Lemma 2) and has moments 

[ = x ~ o ' ( l + f o t q ~ d t ) = x ~ o ' ( l + ~ )  

and 

1 t2q~(t) dt" w2e w2 dw 
P =  t 

1 1 + 2 a o" ql 2) 

4 ~ o  1- -2  ( 1 - - 2 ) + a o ' q l  1) 

q~0 being the ith moment of qt- 
The next corollary follows from the theorem. 

(18) 

Corollary. Let a and c~ be scaled according to (8) and (9). Then the 
evolution of a test particle in the infinite tube tends to a diffusion process 
with diffusion constant given by (18) as r tends to zero. 

4. C L A U S I N G ' S  E X P E R I M E N T  

In 1930, Clausing (1) proposed the following experiment for measuring 
the constant ro = 1/c~, which is the mean time the particles are adsorbed at 
the wall during a diffuse reflection: Two vessels A and B are connected by a 
long capillary tube. Vessel A contains a gas while in B there is vacuum. At 
time t = 0, a valve is opened and gas molecules start streaming through the 
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tube from A to B. Assuming that the gas flow can be approximated by a 
diffusion, one can find out the diffusion constant p from the flow J(t) 
entering B. J(t) grows from zero at t = 0 to a constant value. The time until 
J(t) becomes stationary depends in a characteristic way on p. 

Clausing derived the following formula for the diffusion constant 
(Ref. 1, formula 45) 

4 r 2 

P = 3  Zo+(2r/u ) (19) 

where r is the radius of the tube and u the mean velocity of the particles 
being reemitted from the wall. (u is proportional to the square root of the 
temperature of the wall.) From (19), ro can be evaluated if p is known 
through an experiment. 

In the time following Clausing's proposal, the diffusion ansatz for a 
transport problem like this was contested. While Armand (2) justified it, 
Gorenflo, Pacco, and Scherzer(3}--calling into doubt several arguments of 
Armand-- thought  to refuse this way of description by results of a Monte 
Carlo simulation. However, the most recent simulation result we know, 
which has been obtained by Willrich (4} (who seems to have been much 
more careful in producing statistical results) again confirms Clausing's 
ansatz. A similar conclusion has to be drawn from the results of Pack and 
Yamamoto.(5,6) 

As we have shown in this paper, the diffusion ansatz is indeed a 
correct way of describing a Knudsen flow in thin cylinders. Moreover by 
(18), we have obtained an exact formula for the diffusion constant. 
Inserting 2 = 0, the mean velocity corresponding to density (2) 

u = 3. x/-~/~ 

and the numerically evaluated quantities 

and 

yields 

fo ~t2qt dt = 5, 3 

fo~ tqt dt = 1, 8 

?,2 
p = 1, 3 (20) 

~o + (2, 4r)/u 

which deviates only slightly from Clausing's result (19). 
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We do not go into details concerning the limiting behavior of a Knud- 
sen flow in finite cylinders (a<<.z <<. b). A convenient means is to consider 
the process 7 (r) stopped at T*, T* being the time of the first passage out of 
the interval [a, b]. 
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